ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABUS

For
M.Tech. MECHANICAL BRANCH

Specialization:

MACHINE DESIGN
ACADEMIC REGULATIONS R13 FOR M. Tech (REGULAR) DEGREE COURSE

Applicable for the students of M. Tech (Regular) Course from the Academic Year 2013-14 onwards

The M. Tech Degree of Jawaharlal Nehru Technological University Kakinada shall be conferred on candidates who are admitted to the program and who fulfil all the requirements for the award of the Degree.

1.0 ELIGIBILITY FOR ADMISSIONS

Admission to the above program shall be made subject to eligibility, qualification and specialization as prescribed by the University from time to time.

Admissions shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the University or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Govt. from time to time.

2.0 AWARD OF M. Tech DEGREE

2.1 A student shall be declared eligible for the award of the M. Tech Degree, if he pursues a course of study in not less than two and not more than four academic years.

2.2 The student shall register for all 80 credits and secure all the 80 credits.

2.3 The minimum instruction days in each semester are 90.

3.0 A. COURSES OF STUDY

The following specializations are offered at present for the M. Tech course of study.

1. M.Tech- Structural Engineering
2. M.Tech- Transportation Engineering
3. M.Tech- Infrastructure Engineering & Management
4. ME- Soil Mechanics and Foundation Engineering
5. M.Tech- Environmental Engineering
6. M.Tech-Geo-Informatics
7. M.Tech-Spatial Information Technology
8. M.Tech- Civil Engineering
11. M.Tech- Power Electronics
12. M.Tech- Power & Industrial Drives
13. M.Tech- Power Electronics & Electrical Drives
15. M.Tech- Power Electronics & Drives
16. M.Tech- Power Systems
17. M.Tech- Power Systems Engineering
18. M.Tech- High Voltage Engineering
20. M.Tech- Power System and Control
22. M.Tech- Electrical Machines and Drives
23. M.Tech- Advanced Power Systems
25. M.Tech- Control Engineering
26. M.Tech- Control Systems
27. M.Tech- Electrical Power Engineering
28. M.Tech- Power Engineering & Energy System
29. M.Tech- Thermal Engineering
30. M.Tech- CAD/CAM
32. M.Tech- Computer Aided Design and Manufacture
33. M.Tech- Advanced Manufacturing Systems
34. M.Tech-Computer Aided Analysis & Design
35. M.Tech- Mechanical Engineering Design
36. M.Tech- Systems and Signal Processing
38. M.Tech- Electronics & Communications Engineering
39. M.Tech- Communication Systems
40. M.Tech- Communication Engineering & Signal Processing
41. M.Tech- Microwave and Communication Engineering
42. M.Tech- Telematics
<table>
<thead>
<tr>
<th>Course Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>43. M.Tech- Digital Systems & Computer Electronics</td>
</tr>
<tr>
<td>44. M.Tech- Embedded System</td>
</tr>
<tr>
<td>45. M.Tech- VLSI</td>
</tr>
<tr>
<td>46. M.Tech- VLSI Design</td>
</tr>
<tr>
<td>47. M.Tech- VLSI System Design</td>
</tr>
<tr>
<td>48. M.Tech- Embedded System & VLSI Design</td>
</tr>
<tr>
<td>49. M.Tech- VLSI & Embedded System</td>
</tr>
<tr>
<td>50. M.Tech- VLSI Design & Embedded Systems</td>
</tr>
<tr>
<td>51. M.Tech- Image Processing</td>
</tr>
<tr>
<td>52. M.Tech- Digital Image Processing</td>
</tr>
<tr>
<td>53. M.Tech- Computers & Communication</td>
</tr>
<tr>
<td>54. M.Tech- Computers & Communication Engineering</td>
</tr>
<tr>
<td>55. M.Tech- Instrumentation & Control Systems</td>
</tr>
<tr>
<td>56. M.Tech – VLSI & Micro Electronics</td>
</tr>
<tr>
<td>58. M.Tech- Embedded System & VLSI</td>
</tr>
<tr>
<td>59. M.Tech- Computer Science & Engineering</td>
</tr>
<tr>
<td>60. M.Tech- Computer Science</td>
</tr>
<tr>
<td>61. M.Tech- Computer Science & Technology</td>
</tr>
<tr>
<td>62. M.Tech- Computer Networks</td>
</tr>
<tr>
<td>63. M.Tech- Computer Networks & Information Security</td>
</tr>
<tr>
<td>64. M.Tech- Information Technology</td>
</tr>
<tr>
<td>65. M.Tech- Software Engineering</td>
</tr>
<tr>
<td>66. M.Tech- Neural Networks</td>
</tr>
<tr>
<td>67. M.Tech- Chemical Engineering</td>
</tr>
<tr>
<td>68. M.Tech- Biotechnology</td>
</tr>
<tr>
<td>69. M.Tech- Nano Technology</td>
</tr>
<tr>
<td>70. M.Tech- Food Processing</td>
</tr>
<tr>
<td>71. M.Tech- Avionics</td>
</tr>
</tbody>
</table>

and any other course as approved by AICTE/ University from time to time.
Departments offering M. Tech Programmes with specializations are noted below:

<table>
<thead>
<tr>
<th>Civil Engg.</th>
<th>****</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EEE</th>
<th>1. M.Tech- Power Electronics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ME</th>
<th>1. M.Tech- Thermal Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE</td>
<td>1. M.Tech- Systems and Signal Processing</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>3. M.Tech- Electronics & Communications Engineering</td>
</tr>
<tr>
<td></td>
<td>4. M.Tech- Communication Systems</td>
</tr>
<tr>
<td></td>
<td>5. M.Tech- Communication Engineering & Signal Processing</td>
</tr>
<tr>
<td></td>
<td>6. M.Tech- Microwave and Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>7. M.Tech- Telematics</td>
</tr>
<tr>
<td></td>
<td>9. M.Tech- Embedded System</td>
</tr>
<tr>
<td></td>
<td>10. M.Tech- VLSI</td>
</tr>
<tr>
<td></td>
<td>11. M.Tech- VLSI Design</td>
</tr>
<tr>
<td></td>
<td>12. M.Tech- VLSI System Design</td>
</tr>
<tr>
<td></td>
<td>14. M.Tech- VLSI & Embedded System</td>
</tr>
<tr>
<td></td>
<td>15. M.Tech- VLSI Design & Embedded Systems</td>
</tr>
<tr>
<td></td>
<td>16. M.Tech- Image Processing</td>
</tr>
<tr>
<td></td>
<td>17. M.Tech- Digital Image Processing</td>
</tr>
<tr>
<td></td>
<td>18. M.Tech- Computers & Communication</td>
</tr>
<tr>
<td></td>
<td>20. M.Tech- Instrumentation & Control Systems</td>
</tr>
<tr>
<td></td>
<td>23. M.Tech- Embedded System & VLSI</td>
</tr>
<tr>
<td>CSE</td>
<td>1. M.Tech- Computer Science & Engineering</td>
</tr>
<tr>
<td></td>
<td>2. M.Tech- Computer Science</td>
</tr>
<tr>
<td></td>
<td>3. M.Tech- Computer Science & Technology</td>
</tr>
<tr>
<td></td>
<td>4. M.Tech- Computer Networks</td>
</tr>
<tr>
<td></td>
<td>5. M.Tech- Computer Networks & Information Security</td>
</tr>
<tr>
<td></td>
<td>6. M.Tech- Information Technology</td>
</tr>
<tr>
<td></td>
<td>7. M.Tech- Software Engineering</td>
</tr>
<tr>
<td></td>
<td>8. M.Tech- Neural Networks</td>
</tr>
<tr>
<td>Others</td>
<td>1. M.Tech- Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td>2. M.Tech- Biotechnology</td>
</tr>
<tr>
<td></td>
<td>3. M.Tech- Nano Technology</td>
</tr>
<tr>
<td></td>
<td>4. M.Tech- Food Processing</td>
</tr>
<tr>
<td></td>
<td>5. M.Tech- Avionics</td>
</tr>
</tbody>
</table>
4.0 ATTENDANCE

4.1 A student shall be eligible to write University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.

4.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester shall be granted by the College Academic Committee.

4.3 Shortage of Attendance below 65% in aggregate shall not be condoned.

4.4 Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.

4.5 A prescribed fee shall be payable towards condonation of shortage of attendance.

4.6 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

5.0 EVALUATION

The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks for theory and 100 marks for practicals, on the basis of Internal Evaluation and End Semester Examination.

5.1 For the theory subjects 60 marks shall be awarded based on the performance in the End Semester Examination and 40 marks shall be awarded based on the Internal Evaluation. The internal evaluation shall be made based on the average of the marks secured in the two Mid Term-Examinations conducted—one in the middle of the Semester and the other immediately after the completion of instruction. Each mid term examination shall be conducted for a total duration of 120 minutes with 4 questions (without choice) each question for 10 marks. End semester examination is conducted for 60 marks for 5 questions to be answered out of 8 questions.
5.2 For practical subjects, 60 marks shall be awarded based on the performance in the End Semester Examinations and 40 marks shall be awarded based on the day-to-day performance as Internal Marks.

5.3 There shall be two seminar presentations during III semester and IV semester. For seminar, a student under the supervision of a faculty member, shall collect the literature on a topic and critically review the literature and submit it to the department in a report form and shall make an oral presentation before the Project Review Committee consisting of Head of the Department, Supervisor and two other senior faculty members of the department. For each Seminar there will be only internal evaluation of 50 marks. A candidate has to secure a minimum of 50% of marks to be declared successful.

5.4 A candidate shall be deemed to have secured the minimum academic requirement in a subject if he secures a minimum of 40% of marks in the End semester Examination and a minimum aggregate of 50% of the total marks in the End Semester Examination and Internal Evaluation taken together.

5.5 In case the candidate does not secure the minimum academic requirement in any subject (as specified in 5.4) he has to reappear for the End semester Examination in that subject. A candidate shall be given one chance to re-register for each subject provided the internal marks secured by a candidate are less than 50% and has failed in the end examination. In such a case, the candidate must re-register for the subject(s) and secure the required minimum attendance. The candidate’s attendance in the re-registered subject(s) shall be calculated separately to decide upon his eligibility for writing the end examination in those subject(s). In the event of the student taking another chance, his internal marks and end examination marks obtained in the previous attempt stand cancelled. For re-registration the candidates have to apply to the University through the college by paying the requisite fees and get approval from the University before the start of the semester in which re-registration is required.
5.6 In case the candidate secures less than the required attendance in any re registered subject(s), he shall not be permitted to write the End Examination in that subject. He shall again re-register the subject when next offered.

5.7 Laboratory examination for M. Tech. courses must be conducted with two Examiners, one of them being the Laboratory Class Teacher or teacher of the respective college and the second examiner shall be appointed by the university from the panel of examiners submitted by the respective college.

6.0 EVALUATION OF PROJECT/DISSERTATION WORK

Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.

6.1 A Project Review Committee (PRC) shall be constituted with Head of the Department and two other senior faculty members.

6.2 Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement of all the subjects, both theory and practical.

6.3 After satisfying 6.2, a candidate has to submit, in consultation with his project supervisor, the title, objective and plan of action of his project work for approval. The student can initiate the Project work, only after obtaining the approval from the Project Review Committee (PRC).

6.4 If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the Project Review Committee (PRC). However, the Project Review Committee (PRC) shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.

6.5 A candidate shall submit his status report in two stages at least with a gap of 3 months between them.

6.6 The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after
successful completion of theory and practical course with the approval of PRC not earlier than 40 weeks from the date of registration of the project work. The candidate has to pass all the theory and practical subjects before submission of the Thesis.

6.7 Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute.

6.8 The thesis shall be adjudicated by one examiner selected by the University. For this, the Principal of the College shall submit a panel of 5 examiners, eminent in that field, with the help of the guide concerned and head of the department.

6.9 If the report of the examiner is not favourable, the candidate shall revise and resubmit the Thesis, in the time frame as decided by the PRC. If the report of the examiner is unfavorable again, the thesis shall be summarily rejected. The candidate has to re-register for the project and complete the project within the stipulated time after taking the approval from the University.

6.10 If the report of the examiner is favourable, Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the examiner who adjudicated the Thesis. The Board shall jointly report the candidate’s work as one of the following:

A. Excellent
B. Good
C. Satisfactory
D. Unsatisfactory

The Head of the Department shall coordinate and make arrangements for the conduct of Viva-Voce examination.

6.11 If the report of the Viva-Voce is unsatisfactory, the candidate shall retake the Viva-Voce examination only after three months. If he fails to get a satisfactory report at the second Viva-Voce examination, the candidate has to re-register for the project and complete the project within the stipulated time after taking the approval from the University.
7.0 AWARD OF DEGREE AND CLASS

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of M. Tech. Degree he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above (Without any Supplementary Appearance)</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60% 70% and above (With any Supplementary Appearance)</td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
</tr>
</tbody>
</table>

The marks in internal evaluation and end examination shall be shown separately in the memorandum of marks.

8.0 WITHOLDING OF RESULTS

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be witheld. His degree will be withheld in such cases.

4.0 TRANSITORY REGULATIONS (for R09)

9.1 Discontinued or detained candidates are eligible for re-admission into same or equivalent subjects at a time as and when offered.

9.2 The candidate who fails in any subject will be given two chances to pass the same subject; otherwise, he has to identify an equivalent subject as per R13 academic regulations.

10. GENERAL

10.1 Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.

10.2 The academic regulation should be read as a whole for the purpose of any interpretation.

10.3 In the case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

10.4 The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
MALPRACTICES RULES
DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and (theory or practical) in which the candidate is appearing.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td>6</td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in-charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or</td>
</tr>
<tr>
<td></td>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td></td>
<td>outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
</tr>
</tbody>
</table>
| 8. | Possess any lethal weapon or firearm in the examination hall. | Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
<td>Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
<td>Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.</td>
<td></td>
</tr>
</tbody>
</table>
Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
 (i) A show cause notice shall be issued to the college.
 (ii) Impose a suitable fine on the college.
 (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.
Prohibition of ragging in educational institutions Act 26 of 1997

Salient Features

⇒ Ragging within or outside any educational institution is prohibited.
⇒ Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

<table>
<thead>
<tr>
<th>Imprisonment upto</th>
<th>Fine Upto</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td>+ Rs. 1,000/-</td>
</tr>
<tr>
<td>1 Year</td>
<td>+ Rs. 2,000/-</td>
</tr>
<tr>
<td>2 Years</td>
<td>+ Rs. 5,000/-</td>
</tr>
<tr>
<td>5 Years</td>
<td>+ Rs.10,000/-</td>
</tr>
<tr>
<td>10 Months</td>
<td>+ Rs. 50,000/-</td>
</tr>
</tbody>
</table>

In Case of Emergency CALL TOLL FREE NO. : 1800 - 425 - 1288

LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
KAKINADA-533003, Andhra Pradesh (India)
For Constituent Colleges and Affiliated Colleges of JNTUK

Ragging

ABSOLUTELY NO TO RAGGING

1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
2. Ragging entails heavy fines and/or imprisonment.
3. Ragging invokes suspension and dismissal from the College.
4. Outsiders are prohibited from entering the College and Hostel without permission.
5. Girl students must be in their hostel rooms by 7.00 p.m.
6. All the students must carry their Identity Card and show them when demanded
7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

Jawaharlal Nehru Technological University Kakinada
For Constituent Colleges and Affiliated Colleges of JNTUK

In Case of Emergency CALL TOLL FREE NO. : 1800 - 425 - 1288
LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
DEPARTMENT OF MECHANICAL ENGINEERING

M.Tech Specialization: MACHINE DESIGN

I SEMESTER

<table>
<thead>
<tr>
<th>S.NO</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COMPUTATIONAL METHODS IN ENGINEERING</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>ADVANCED MECHANICS OF SOLIDS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ADVANCED MECHANISMS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>MECHANICAL VIBRATIONS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>DESIGN WITH ADVANCED MATERIALS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>ELECTIVE – I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DESIGN OF AUTOMOBILE SYSTEMS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PRODUCT DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GEOMETRIC MODELLING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NON DESTRUCTIVE EVALUATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MACHINE DYNAMICS LAB</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

II SEMESTER

<table>
<thead>
<tr>
<th>S.NO</th>
<th>SUBJECT</th>
<th>L</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPTIMIZATION AND RELIABILITY</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>EXPERIMENTAL STRESS ANALYSIS</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>FINITE ELEMENT METHOD</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>ELECTIVE – II</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>FRACTURE MECHANICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GEAR ENGINEERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DESIGN FOR MANUFACTURING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CONTINUUM MECHANICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ELECTIVE - III</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>TRIBOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SIGNAL ANALYSIS AND CONDITION MONITORING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>COMPUTATIONAL FLUID DYNAMICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DESIGN SYNTHESIS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ELECTIVE-IV</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PRESSURE VESSEL DESIGN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>SEMINAR - I</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>COMPREHENSIVE VIVA VOCE</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>PROJECT - PART I</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMINAR - II</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>PROJECT PART II & VIVA VOCE</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>
SYLLABUS

<table>
<thead>
<tr>
<th>UNIT</th>
<th>I – I</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT – I

Introduction to numerical methods applied to engineering problems:

UNIT – II

Boundary value problems and characteristic value problems: Shooting method – Solution through a set of equations – Derivative boundary conditions – Rayleigh – Ritz method – Characteristic value problems.

UNIT – III

Transformation Techniques: Continuous fourier series, frequency and time domains, laplace transform, fourier integral and transform, discrete fourier transform (DFT), Fast fourier transform (FFT).

UNIT – IV

UNIT – V

TEXT BOOKS:

1. Steven C. Chapra, Raymond P. Canale “Numerical Methods for Engineers” Tata Mc-Graw Hill
2. Curtis F. Gerald, Partick O. Wheatly, ”Applied numerical analysis” Addison-Wesley, 1989

REFERENCES:

3. Kreysis, Advanced Mathematics
ADVANCED MECHANICS OF SOLIDS

<table>
<thead>
<tr>
<th>UNIT-I</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

UNIT-I

Theories of stress and strain, Definition of stress at a point, stress notation, principal stresses, other properties, differential equations of motion of a deformable body, deformation of a deformable body, strain theory, principal strains, strain of a volume element, small displacement theory.

Stress –strain temperature relations: Elastic and non elastic response of a solid, first law of thermodynamics, Hooke’s Law, Anisotropic elasticity, Hooke’s Law, Isotropic elasticity, initiation of Yield, Yield criteria.

UNIT-II

Failure criteria: Modes of failure, Failure criteria, Excessive deflections, Yield initiation, fracture, Progressive fracture, (High Cycle fatigue for number of cycles $N > 10^6$), buckling.

Application of energy methods: Elastic deflections and statically indeterminate members and structures: Principle of stationary potential energy, Castiglioni’s theorem on deflections, Castiglioni’s theorem on deflections for linear load deflection relations, deflections of statically determinate structures.

UNIT-III

Unsymmetrical bending: Bending stresses in Beams subjected to Nonsymmetrical bending; Deflection of straight beams due to nonsymmetrical bending.

Curved beam theory: Winkler Bach formula for circumferential stress – Limitations – Correction factors – Radial stress in curved beams – closed ring subjected to concentrated and uniform loads-stresses in chain links.
UNIT-IV

Torsion: Linear elastic solution; Prandtl elastic membrane (Soap-Film) Analogy; Narrow rectangular cross Section ;Hollow thin wall torsion members , multiple connected Cross Sections.

UNIT-V

Contact stresses: Introduction; problem of determining contact stresses; Assumptions on which a solution for contact stresses is based; Expressions for principal stresses; Method of computing contact stresses; Deflection of bodies in point contact; Stresses for two bodies in contact over narrow rectangular area (Line contact), Loads normal to area; Stresses for two bodies in line contact, Normal and Tangent to contact area.

TEXTBOOKS:

3. Advanced Mechanics of Solids, L.S Srinath

REFERENCES:

1. Advanced strength of materials by Den Hortog J.P.
3. Strength of materials & Theory of structures (Vol I & II) by B.C Punmia
4. Strength of materials by Sadhu singh
UNIT – I

Introduction: Elements of Mechanisms; Mobility Criterion for Planar mechanisms and manipulators; Mobility Criterion for spatial mechanisms and manipulators. Spherical mechanisms-spherical trigonometry.

UNIT – II

Advanced Kinematics of plane motion - I: The Inflection circle; Euler – Savary Equation; Analytical and graphical determination of d_1; Bobillier’s Construction; Collineation axis; Hartmann’s Construction; Inflection circle for the relative motion of two moving planes; Application of the Inflection circle to kinematic analysis.

Advanced Kinematics of plane motion - II: Polode curvature; Hall’s Equation; Polode curvature in the four bar mechanism; coupler motion; Relative motion of the output and input links; Determination of the output angular acceleration and its Rate of change; Freudenstein’s collineation –axis theorem; Carter –Hall circle; The circling – point curve for the Coupler of a four bar mechanism.

UNIT – III

Introduction to Synthesis-Graphical Methods - I: The Four bar linkage; Guiding a body through Two distinct positions; Guiding a body through Three distinct positions; The Rotocenter triangle; Guiding a body through Four distinct positions; Burmester’s curve.

Introduction to Synthesis-Graphical Methods - II: Function generation; General discussion; Function generation: Relative –rotocenter method, Overlay’s method, Function generation- Velocity – pole method; Path generation: Hrones’s and Nelson’s motion Atlas, Roberts’s theorem.

UNIT – IV

Introduction to Synthesis - Analytical Methods: Function Generation: Freudenstien’s equation, Precision point approximation, Precision – derivative approximation; Path Generation: Synthesis of Four-bar
Mechanisms for specified instantaneous condition; Method of components; Synthesis of Four-bar Mechanisms for prescribed extreme values of the angular velocity of driven link; Method of components.

UNIT – V

Manipulator kinematics : D-H transformation matrix ; Direct and Inverse kinematic analysis of Serial manipulators: Articulated ,spherical & industrial robot manipulators- PUMA, SCARA, STANFORD ARM, MICROBOT.

TEXT BOOKS:

REFERENCE BOOKS:

UNIT I

Single degree of Freedom systems: Undamped and damped free vibrations, forced vibrations; coulomb damping; Response to harmonic excitation; rotating unbalance and support excitation, Vibration isolation and transmissibility, Response to Non Periodic Excitations, unit Impulse, unit step and unit Ramp functions; response to arbitrary excitations, The Convolution Integral; shock spectrum; System response by the Laplace Transformation method.

UNIT- II

Multi degree freedom systems: Principal modes – undamped and damped free and forced vibrations; undamped vibration absorbers, Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis; Method of matrix iteration; Torsional vibrations of multi – rotor systems and geared systems; Discrete-Time systems.

UNIT-III

Numerical Methods: Rayliegh’s, stodola’s, Matrix iteration, Rayleigh-Ritz Method and Holzer’s methods

UNIT-IV

Experimental Methods: Vibrometers, velocity meters & accelerometers

UNIT V

Application of concepts: Free vibration of strings – longitudinal oscillations of bars-transverse vibrations of beams- Torsional vibrations of shafts, Critical speeds without and with damping, secondary critical speed.
TEXT BOOKS:

1. Elements of Vibration Analysis by Meirovitch.

REFERENCES:

1. Vibrations by W.T. Thomson
DESIGN WITH ADVANCED MATERIALS

UNIT – I
Fundamentals of material science: Elasticity in metals and polymers, mechanism of plastic deformation, role of dislocations, yield stress, shear strength of perfect and real crystals, strengthening mechanism, work hardening, solid solution, grain boundary strengthening. Poly phase mixture, precipitation, particle, fiber and dispersion strengthening, effect of temperature, strain and strain rate on plastic behavior, super plasticity, deformation of non crystalline material.

UNIT – II
Motivation of selection, cost basis and service requirements, selection for mechanical properties, strength, toughness, fatigue and creep, use of material property charts for material selection.

UNIT – III
Modern metallic Materials: Dual phase steels, micro alloyed, high strength low alloy (HSLA) Steel, maraging steel, intermetalics, Ni and Ti aluminides, super alloys.

UNIT – IV
Non metallic materials: Polymeric materials and their molecular structures, production techniques for fibers, foams, adhesives and coatings, structure, properties and applications of engineering polymers. composites; Introduction, reinforcement, types of composite materials, - properties, processing and application of composite materials.

UNIT – V
Smart materials, shape memory alloys, metallic glass, quasi crystal and nano crystalline materials.

TEXT BOOKS:
3. Material selection in mechanical design by M.F Ashby. Bott

REFERENCES:
UNIT-I

Conceptual design of automobiles: body shape definition based on aerodynamic structure safety, sub-systems integration considerations, road load analysis, transmission of road loads to structure.

UNIT-II

Detail design of structural elements, load analysis for different vehicles, safety consideration, design for bending, torsion conditions, criteria for toppling, based on cornering loads.

UNIT-III

Suspension system integration with vehicle for ride comfort, methods of mounting suspension and power train systems.

UNIT-IV

Driver cabin/seat design, design of control systems based on ergonomics, anthropometry, human factors engineering considerations.

UNIT-V

Safety aspects of automobiles, devices, energy absorbing systems, crash worthiness, legislation relating to safety, vehicle performance requirements, sub systems packaging and verification of vehicle performance through testing (lab, field testing).

TEXT BOOKS

1. Donald E. Males, Fundamentals of automobile body structure design (R-394), SAE2011
2. W.F. Milliker, D.L. Milliker, Maurice Olly, Chassis design: principles and analysis (R-206) SAE2002
3. J.H Smith, Modern Vehicle System Design
UNIT-I

UNIT-II

Product management:

The operation of product management: Customer focus of product management, product planning process, Levels of strategic planning, Wedge analysis, Opportunity search, Product life cycle, Life cycle theory and practice.

Product development: Managing new products, Generating ideas, Sources of product innovation, Selecting the best ideas, The political dimension of product design, Managing the product launch and customer feedback.

Product managers and manufacturing: The need for effective relationships, The impact of manufacturing processes on product decisions, Prototype planning, Productivity potentials, Management of product quality, Customer service levels.

UNIT-III

Risk and Reliability: Risk and Society, Hazard Analysis, Fault Tree Analysis.

Failure Analysis and Quality: Causes of Failures, Failure Modes, Failure
Mode and Effect Analysis, FMEA Procedure, Classification of Severity, Computation of Criticality Index, Determination of Corrective Action, Sources of Information, Copyright and Copying, Patent Literature.

UNIT- IV

Product Testing; thermal, vibration, electrical, and combined environments, temperature testing, vibration testing, test effectiveness. Accelerated testing and data analysis, accelerated factors. Weibull probability plotting, testing with censored data.

UNIT- V

Design Standardization and Cost Reduction: Standardization Methodology, Benefits of Product Standardization; International, National, Association and Company Level Standards; Parts Modularization

TEXT BOOKS

1. Engineering Design, George E. Dieter, McGRAW-HILL
2. Product Integrity and Reliability in Design, John W. Evans and Jillian Y. Evans, Springer Verlag
3. The Product Management Handbook, Richard S. Handscombe, McGRAW-HILL
4. New Product Design, Ulrich Eppinger
UNIT - I

Introduction: Definition, Explicit and implicit equations, parametric equations.

UNIT - II

Cubic Splines-1: Algebraic and geometric form of cubic spline, tangent vectors, parametric space of a curve, blending functions, four point form, reparametrization, truncating and subdividing of curves. Graphic construction and interpretation, composite pc curves.

UNIT - III

Bezier Curves: Bernstein basis, equations of Bezier curves, properties, derivatives.

B-Spline Curves: B-Spline basis, equations, knot vectors, properties and derivatives.

UNIT – IV

Surfaces: Bicubic surfaces, Coon’s surfaces, Bezier surfaces, B-Spline surfaces, surfaces of revolutions, Sweep surfaces, ruled surfaces, tabulated cylinder, bilinear surfaces, Gaussian curvature.

UNIT – V

Solids: Tricubic solid, Algebraic and geometric form.

Solid modeling concepts: Wire frames, Boundary representation, Half space modeling, spatial cell, cell decomposition, classification problem.

TEXT BOOKS:

1. CAD/CAM by Ibrahim Zeid, Tata McGraw Hill.

REFERENCES:

UNIT – I

General Methods: Flaw Detection Using Dye Penetrants. Magnetic Particle Inspection, introduction to electrical impedance, Principles of Eddy Current testing, Flaw detection using eddy currents.

UNIT – II

UNIT – III

Generation of ultrasonic waves, Horizontal and shear waves, Near field and far field acoustic wave description, Ultrasonic probes- straight beam, direct contact type, Angle beam, Transmission/reflection type, and delay line transducers, acoustic coupling and media, Transmission and pulse echo methods, A-scan, B-scan, C-scan, F-scan and P-scan modes, Flaw sizing in ultrasonic inspection: AVG, Amplitude, Transmission, TOFD, Satellite pulse, Multi-modal transducer, Zonal method using focused beam. Flow location methods, Signal processing in Ultrasonic NDT; Mimics, spurious echos and noise. Ultrasonic flaw evaluation.

UNIT – IV

Holography: Principles and practices of Optical holography, acoustical, microwave, x-ray and electron beam holography techniques.
UNIT – V

Applications: NDT in flaw analysis of Pressure vessels, piping, NDT in Castings, Welded constructions, etc., Case studies.

TEXTBOOKS:

1. Ultrasonic testing by Krautkramer and Krautkramer
2. Ultrasonic inspection 2 Training for NDT : E. A. Gingel, Prometheus Press,
3. ASTM Standards, Vol 3.01, Metals and alloys
<table>
<thead>
<tr>
<th>I – I</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

MACHINE DYNAMICS LABORATORY

EXPERIMENTS:

1. Determination of damped natural frequency of vibration of the vibrating system with different viscous oils
2. Determination of steady state amplitude of a forced vibratory system
3. Static balancing using steel balls
4. Determination of the magnitude and orientation of the balancing mass in dynamic balancing
5. Field balancing of the thin rotors using vibration pickups.
6. Determination of the magnitude of gyroscopic couple, angular velocity of precession, and representation of vectors.
7. Determination of natural frequency of given structure using FFT analyzer
8. Diagnosis of a machine using FFT analyzer.
9. Direct kinematic analysis of a robot
10. Inverse kinematic analysis of a robot
11. An experiment on friction, wear, pin-on-disc
12. An experiment on stress intensity factors / fatigue, fracture
13. Modal analysis of beams and plates
UNIT - I

Classical optimization techniques: Single variable optimization with and without constraints, multi – variable optimization without constraints, multi – variable optimization with constraints – method of Lagrange multipliers, Kuhn-Tucker conditions.

UNIT - II

Numerical methods for optimization: Nelder Mead’s Simplex search method, Gradient of a function, Steepest descent method, Newton’s method, types of penalty methods for handling constraints.

UNIT - III

Genetic algorithm (GA): Differences and similarities between conventional and evolutionary algorithms, working principle, reproduction, crossover, mutation, termination criteria, different reproduction and crossover operators, GA for constrained optimization, draw backs of GA,

Genetic Programming (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.

UNIT – IV

Multi-Objective GA: Pareto’s analysis, Non-dominated front, multi – objective GA, Non-dominated sorted GA, convergence criterion, applications of multi-objective problems .

UNITV

Applications of Optimization in Design and Manufacturing systems: Some typical applications like optimization of path synthesis of a four-bar mechanism, minimization of weight of a cantilever beam, optimization of springs and gears, general optimization model of a machining process, optimization of arc welding parameters, and general procedure in optimizing machining operations sequence.
TEXTBOOKS:
2. Optimization for Engineering Design – Kalyanmoy Deb, PHI Publishers

REFERENCES:
2. Genetic Programming- Koza
3. Multi objective Genetic algorithms - Kalyanmoy Deb, PHI Publishers
UNIT – I

Introduction: Stress, strain, Plane stress and plane strain conditions, Compatibility conditions. Problems using plane stress and plane strain conditions, stress functions, mohrs circle for stress strain, Three-dimensional stress strain relations.

UNIT – II

Strain Measurement and Recordings: Various types of strain gauges, Electrical Resistance strain gauges, semiconductor strain gauges, strain gauge circuits. Introduction, static recording and data logging, dynamic recording at very low frequencies, dynamic recording at intermediate frequencies, dynamic recording at high frequencies, dynamic recording at very high frequencies, telemetry systems.

UNIT – III

Photo elasticity: Photo elasticity – Polariscope – Plane and circularly polarized light, Bright and dark field setups, Photo elastic materials – Isochromatic fringes – Isoclinics

Three dimensional Photo elasticity: Introduction, locking in model deformation, materials for three-dimensional photo elasticity, machining cementing and slicing three-dimensional models, slicing the model and interpretation of the resulting fringe patterns, effective stresses, the shear-difference method in three dimensions, applications of the Frozen-stress method, the scattered-light method.

UNIT – IV

Brittle coatings: Introduction, coating stresses, failure theories, brittle coating crack patterns, crack detection, ceramic based brittle coatings, resin based brittle coatings, test procedures for brittle coatings analysis, calibration procedures, analysis of brittle coating data.

Moire Methods: Introduction, mechanism of formation of Moire fringes, the geometrical approach to Moire-Fringe analysis, the displacement
field approach to Moire-Fringe analysis, out of plane displacement measurements, out of plane slope measurements, sharpening and multiplication of Moire-Fringes, experimental procedure and techniques.

UNIT – V

Birefringent Coatings

Introduction, Coating stresses and strains, coating sensitivity, coating materials, application of coatings, effects of coating thickness, Fringe-order determinations in coatings, stress separation methods.

TEXTBOOKS:

1. Theory of Elasticity by Timoshenke and Goodier Jr
2. Experimental stress analysis by Dally and Riley, Mc Graw-Hill

REFERENCES:

1. A treatise on Mathematical theory of Elasticity by LOVE .A.H
2. Photo Elasticity by Frocht
3. Experimental stress analysis, Video course by K.Ramesh / NPTEL
UNIT - I

Formulation Techniques: Methodology, Engineering problems and governing differential equations, finite elements. Variational methods: potential energy method, Raleigh Ritz method, strong and weak forms, Galerkin and weighted residual methods, calculus of variations, Essential and natural boundary conditions.

UNIT - II

One-dimensional elements: Bar, trusses, beams and frames, displacements, stresses and temperature effects.

UNIT - III

Two dimensional problems: CST, LST, four noded and eight noded rectangular elements, Lagrange basis for triangles and rectangles, serendipity interpolation functions. Axisymmetric Problems: Axisymmetric formulations, Element matrices, boundary conditions. Heat Transfer problems: Conduction and convection, examples: - two-dimensional fin.

UNIT - IV

Isoparametric formulation: Concepts, sub parametric, super parametric elements, numerical integration, Requirements for convergence, h-refinement and p-refinement, complete and incomplete interpolation functions, pascal’s triangle, Patch test.

UNIT - V

Finite elements in Structural Analysis: Static and dynamic analysis, eigen value problems, and their solution methods, case studies using commercial finite element packages.

TEXT BOOK:
1. Finite element methods by Chandrubatla & Belagondu.

REFERENCES:
UNIT-I

UNIT-II

Griffiths analysis: Concept of energy release rate, G, and fracture energy, R. Modification for ductile materials, loading conditions. Concept of R curves.

Linear Elastic Fracture Mechanics, (LEFM). Three loading modes and the state of stress ahead of the crack tip, stress concentration factor, stress intensity factor and the material parameter the critical stress intensity factor, crack tip plasticity, effect of thickness on fracture toughness.

UNIT-III

UNIT-IV

Fatigue: definition of terms used to describe fatigue cycles, High Cycle Fatigue, Low Cycle Fatigue, mean stress R ratio, strain and load control. S-N curves. Goodmans rule and Miners rule. Micromechanisms of fatigue damage, fatigue limits and initiation and propagation control, leading to a consideration of factors enhancing fatigue resistance. Total life and damage tolerant approaches to life prediction.
UNIT-V

TEXT BOOKS

UNIT – I

Introduction: Principles of gear tooth action, Generation of Cycloid and Involute gears, Involutometry, gear manufacturing processes and inspection, gear tooth failure modes, stresses, selection of right kind of gears.

UNIT – II

Spur Gears, Helical gears, Bevel gears and worm gears, Tooth loads, Principles of Geometry, Design considerations and methodology, Complete design of spur gear teeth considering Lewis beam strength, Buckingham’s dynamic load and wear load, Design of gear shaft and bearings.

UNIT – III

Gear trains: Simple, compound and epicyclic gear trains, Ray diagrams, Design of a gear box of an automobile, Design of gear trains from the propeller shafts of airplanes for auxiliary systems.

UNIT – IV

Gear failures

Analysis of gear tooth failures, Nomenclature of gear tooth wear and failure, tooth breakage, pitting, scoring, wear, overloading, gear-casing problems, lubrication failures

UNIT – V

Optimal Gear design: Optimization of gear design parameters, Weight minimization, Constraints in gear train design-space, interference, strength, dynamic considerations, rigidity etc. Compact design of gear trains, multi objective optimization of gear trains. Application of Traditional and non-traditional optimization techniques
TEXTBOOKS:

REFERENCES:

UNIT - I

Introduction: Design philosophy-steps in design process-general design rules for manufacturability-basic principles of designing for economical production-creativity in design.

UNIT - II

Machining processes: Overview of various machining processes-general design rules for machining-dimensional tolerance and surface roughness-Design for machining – ease – redesigning of components for machining ease with suitable examples. General design recommendations for machined parts.

UNIT - III

Metal casting: Appraisal of various casting processes, selection of casting process, general design considerations for casting-casting tolerance-use of solidification, simulation in casting design-product design rules for sand casting.

UNIT - IV

Metal joining: Appraisal of various welding processes, factors in design of weldments – general design guidelines-pre and post treatment of welds-effects of thermal stresses in weld joints-design of brazed joints. Forging: Design factors for forging – closed die forging design – parting lines of dies–drop forging die design – general design recommendations.

UNIT – V

Extrusion & Sheet metal work: Design guide lines extruded sections-design principles for punching, blanking, bending, deep drawing-Keeler Goodman forging line diagram – component design for blanking. Plastics: Visco elastic and creep behavior in plastics-design guidelines for plastic components-design considerations for injection moulding – design guidelines for machining and joining of plastics.

TEXT BOOKS:
1. Design for manufacture, John cobert, Adisson Wesley. 1995
2. Design for Manufacture by Boothroyd,
3. Design for manufacture, James Bralla

REFERENCE:
1. ASM Hand book Vol.20
UNIT – I

Tensor calculus: Tensor calculus, Multi linear forms, Definition of Tensor over including vector spaces, Alternating tensors, determinants, orientation, tensor products, kinematics of deformations and motion, strain analysis, rotation of tensors, calculations of tensors, internal calculations of tensors and integral identities.

UNIT – II

Eulerian and Lagrangian description of a continuous, discrete systems, continua, physical quantities and their derivatives. Rigid body motion, Relation between continuum models and real materials.

UNIT – III

Conservation laws in a continuum: Mass conservation in Lagrangian and Eulerian frames, Conservation of momentum in Lagrangian and Eulerian frames.

UNIT – IV

Conservation in angular momentum in lagrengreen form. Conservation of energy in in Lagrangian and Eulerian frames. Strain and decomposition. Finite deformation, infinitesimal displacements

UNIT - V

Material frame indifference, Elastic Materials, Viscous fluids, linear viscoelasticity, case studies for metals and polymers.

TEXT BOOK

REFERENCES:

3. Introduction to Continuous Mechanics, B.L.N. Kennett
UNIT – I

Introduction: Nature of surfaces and contact-Surface topography-friction and wear mechanisms, wear maps, effect of lubricants- methods of fluid film formation.

Lubrication: Choice of lubricants, types of oil, Grease and solid lubricants- additives- lubrication systems and their selection.

UNIT – II

Selection of rolling element bearings: Nominal life, static and dynamic capacity-Equivalent load, probabilities of survival- cubic mean load-bearing mounting details, pre loading of bearings, conditioning monitoring using shock pulse method.

UNIT – III

Hydrostatic Bearings: Thrust bearings – pad coefficients- restriction-optimum film thickness-journal bearings – design procedure –Aerostatic bearings; Thrust bearings and Journal bearings – design procedure.

UNIT – IV

UNIT – V

Seals: different type-mechanical seals, lip seals, packed glands, soft piston seals, Mechanical piston rod packing, labyrinth seals and throttling bushes, oil flinger rings and drain grooves – selection of mechanical seals.
Failure of Tribological components: Failure analysis of plain bearings, rolling bearings, gears and seals, wear analysis using soap and Ferrography.

Dry rubbing Bearings: porous metal bearings and oscillatory journal bearings – qualitative approach only.

TEXT BOOKS:

REFERENCES:

UNIT-I

Signal analysis: Filter response time. Detectors. Recorders. Analog analyzer types.

UNIT-II

PRACTICAL ANALYSIS OF STATIONARY SIGNALS: Stepped filter analysis. Swept filter analysis. High speed analysis. Real-time analysis.

UNIT-III

UNIT-IV

PRACTICAL ANALYSIS OF TRANSIENTS: Analysis as a periodic signal. Analysis by repeated playback (constant bandwidth). Analysis by repeated playback (variable bandwidth).

UNIT-V

TEST BOOK:

REFERENCES:

1. Frequency Analysis / R.B. Randall.
3. Theory of Machines and Mechanisms/ Amitab Ghosh & AK Malik/ EWP
UNIT – I

Introduction: Finite difference method, finite volume method, finite element method, governing equations and boundary conditions, Derivation of finite difference equations.

Solution methods: Solution methods of elliptical equations – finite difference formulations, interactive solution methods, direct method with Gaussian elimination.

Parabolic equations-explicit schemes and Von Neumann stability analysis, implicit schemes, alternating direction implicit schemes, approximate factorization, fractional step methods, direct method with tridiagonal matrix algorithm.

UNIT – II

Hyperbolic equations: explicit schemes and Von Neumann stability analysis, implicit schemes, multi step methods, nonlinear problems, second order one-dimensional wave equations.

Burgers equations: Explicit and implicit schemes, Runge-Kutta method.

UNIT – III

Formulations of incompressible viscous flows: Formulations of incompressible viscous flows by finite difference methods, pressure correction methods, vortex methods.

Treatment of compressible flows: potential equation, Eluer equations, Navier-stokes system of equations, flowfield-dependent variation methods, boundary conditions, example problems.

UNIT – IV

Finite volume method: Finite volume method via finite difference method, formulations for two and three-dimensional problems.
UNIT – V

Standard variational methods: Linear fluid flow problems, steady state problems, Transient problems.

TEXT BOOK:

REFERENCE:

MACHINE DESIGN

<table>
<thead>
<tr>
<th>I – II</th>
<th>L</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

(ELECTIVE III)

DESIGN SYNTHESIS

UNIT – I

Design process and methodologies of systematic design conceptual design variants and evaluation; Standardization and its exploitation in design.

UNIT – II

Tolerance from process and function; interchangeability and selective assembly; selection of fits for different design situations, surface finish, Load transmission, load equalization light weight and rigid constructions.

UNIT – III

Design of cast forged sheet metal parts and welded constructions, Machining considerations.

UNIT – IV

Design for assembly and dismantling; Modular constructions erection, operation inspection and maintenance considerations; Ergonomics Design of accuracy; Location pins and registers, Machining in assembly, adjustment, Backlash and Clearance adjustment.

UNIT – V

Problems formulation for design optimization Example illustration the various principles available design variants for some of the common basic functional requirements.

TEXTBOOK:

1. Engineering Design a material and processing approach/ George Dieter/ McGraw Hi8 ll international book company 1983

REFERENCES:

UNIT – I

Introduction: Materials-shapes of Vessels-stresses in cylindrical, spherical and arbitrary, shaped shells, Cylindrical Vessels subjected to internal pressure, wind load, bending and torque for computation of pressure vessels-conical and tetrahedral vessels.

UNIT – II

Theory of thick cylinders: Shrink fit stresses in built up cylinders-auto frettage of thick cylinders, Thermal stresses in Pressure Vessels.

UNIT – III

Theory of rectangular plates: Pure bending-different edge conditions.

Theory circular plates: Simple supported and clamped ends subjected to concentrated and uniformly distributed loads-stresses from local loads, Design of dome bends, shell connections, flat heads and cone openings.

UNIT – IV

Discontinuity stresses in pressure vessels: Introduction, beam on an elastic foundation, infinitely long beam, semi infinite beam, cylindrical vessel under axially symmetrical loading, extent and significance of load deformations on pressure vessels, discontinuity stresses in vessels, stresses in a bimetallic joints, deformation and stresses in flanges.

UNIT – V

Pressure vessel materials and their environment: Introduction, ductile material tensile tests, structure and strength of steel, Leuder’s lines, determination of stress patterns from plastic flow observations, behaviour of steel beyond the yield point, effect of cold work or strain
hardening on the physical properties of pressure vessel steels, fracture
types in tension, toughness of materials, effect of neutron irradiation
of steels, fatigue of metals, fatigue crack growth, fatigue life prediction,
cumulative fatigue damage, stress theory of failure of vessels subject
to steady state and fatigue conditions.

TEXT BOOKS:

1. Theory and design of modern Pressure Vessels by John F.Harvey, Van
 nostrand reihold company, New York.

1. Pressure Vessel Design and Analysis by Bickell, M.B.Ruizcs.

REFERENCES:

2. Indian standard code for unfired Pressure vessels IS:2825.

3. Pressure Vessel Design Hand Book, Henry H.Bednar, P.E.,
 C.B.S.Publishers, New Delhi.

UNIT-I
Introduction to Composites: Introduction, Classification, matrix materials, reinforced matrix of composites

UNIT-II

UNIT-III

UNIT-IV

Macromechanical Analysis of Laminates: Introduction, Laminate Code, Stress–Strain Relations for a Laminate, In-Plane and Flexural
Modulus of a Laminate, Hygrothermal Effects in a Laminate, Warpage of Laminates, hybrid laminates

UNIT-V

Failure, Analysis, and Design of Laminates : Introduction, Special Cases of Laminates, Failure Criterion for a Laminate, Design of a Laminated Composite, static analysis of laminated plates

TEXTBOOKS:

REFERENCES:

UNIT – I

Introduction: Definition of Mechatronics products, design considerations and trade offs. Overview of Mechatronic products. Intelligent machine Vs Automatic machine economic and social justification.

Actuators and drive systems: Mechanical, Electrical, hydraulic drive systems, Characteristics of mechanical, Electrical, Hydraulic and pneumatic actuators and their limitations.

UNIT – II

Motion Control: Control parameters and system objectives, Mechanical Configurations, Popular control system configurations. S-curve, motor/load inertia matching, design with linear slides.

Motion Control algorithms: Significance of feed forward control loops, shortfalls, fundamentals concepts of adaptive and fuzzy – control. Fuzzy logic compensatory control of transformation and deformation non-linearity’s.

UNIT – III

Sensor interfacing: Analog and digital sensors for motion measurement, digital transducers, human-Machine and machine-Machine interfacing devices and strategy.

Architecture of intelligent machines: Introduction to Microprocessor and programmable logic controls and identification of systems. System design classification, motion control aspects in design.

UNIT – IV

Machine vision: Feature and pattern recognition methods, concepts of perception and cognition in decision-making, basics of image processing, binary and grey scale images, sharpening and smoothening of images.
UNIT – V

Micromechatronic Systems: Micro sensors, micro actuators, smart instrumentation, micro-fabrication methods – lithography, etching, micro-joing.

TEXTBOOKS:

UNIT – I

Strain at point: Cauchy’s formulae for strains, principal strains, principal shear strains, derivative strain tensor. Strain-displacement relationships. Linear elastic stress strain relations, Generalized Hooke’s law, nonlinear elastic stress strain relations

UNIT – II

Principle of virtual work and its rate forms: Drucker’s stability postulate, normality, convexity and uniqueness for an elastic solid. Incremental stress strain relations.

Criteria for loading and unloading: Elastic and plastic strain increment tensors, Plastic potential and flow rule associated with different Yield criteria, Convexity, normality and uniqueness considerations for elastic–plastic materials. Expansion of a thick walled cylinder.

UNIT – III

Incremental stress strain relationships: Prandtl-Reuss material model. J_2 deformation theory, Drucker-Prager material, General Isotropic materials.

Deformation theory of plasticity: Loading surface, Hardening rules. Flow rule and Druckers stability postulate. Concept of effective stress and effective strain, mixed hardening material. Problems.
UNIT – IV

Finite element formulation for an elastic plastic matrix: Numerical algorithms for solving non linear equations, Convergence criteria, Numerical implementations of the elastic plastic incremental constitutive relations

UNIT – V

Bounding surface theory: Uniaxial and multiaxial loading anisotropic material behaviour. Theorems of limit analysis: Statically admissible stress field and kinematically admissible velocity field. Upper and lower bound theorems, examples and problems.

TEXT BOOK:

1. Theory of Elasticity by S.P. Timoshenko & J.K Goodier, MGH

REFERENCES:

1. Plasticity for structural engineering W.F.Chen s and D.J.Han, Springer verlag-1987.
3. Theory of plasticity, Sadhu Singh
I. Modeling
 1. Surface modeling
 2. Solid modeling
 3. Drafting
 4. Assembling

II. Structural Analysis using any FEA Package for different structures that can be discretised with 1-D,2-D & 3-D elements
 1. Static Analysis
 2. Modal Analysis
 3. Harmonic Analysis
 4. Spectrum Analysis
 5. Buckling Analysis
 6. Analysis of Composites
 7. Fracture mechanics

III. Thermal Analysis using any FEA Package for different structures that can be discretised with 1-D,2-D & 3-D elements
 1. Steady state thermal analysis
 2. Transient thermal analysis

IV. Transient analysis using any FEA Package for different structures that can be discretised with 1-D,2-D & 3-D elements

V. Prudent Design – a case study

REFERENCES:
 User manuals of ANSYS package Version 9.0
 I-DEAS Package Version 9.0